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ABSTRACT

The broadening of our energy system to include increasing amounts of wind and solar has led to significant
debate about the total costs and benefits associated with different types of generators—with potentially far-
reaching policy implications. This has included debate about the cost associated with integrating these gen-
erators onto the electric grid. For photovoltaics (PV), this encompasses costs incurred on both the bulk power
and distribution systems, as well as the value provided to them. These costs and benefits, in particular those
associated with integrating PV onto the distribution system, are not well understood. We seek to advance the
state of understanding of “grid integration costs” for the distribution system by reviewing prior literature and
outlining a transparent, bottom-up approach that can be used to calculate these costs. We provide a clear de-
lineation of costs to integrate PV in to the distribution system within the larger context of total costs and benefits
associated with PV generators. We emphasize that these costs are situationally dependent, and that a single “cost
of integration” cannot be obtained. We additionally emphasize that benefits must be considered when evaluating
the competitiveness of the technology in a given situation.

1. Introduction

The cost of photovoltaic (PV) modules and systems are increasingly
well known. However, the costs associated with integrating PV into the
bulk power and distribution systems are not well understood, especially
for very high penetration levels. Bulk power systems consist of cen-
tralized energy generators and high-voltage (= 69kV) transmission
lines that carry power from these generators over long distances.
Distribution substations reduce the voltage from transmission lines and
transfer power to the distribution systems, which consist of medium
(typically 4-46 kV) and low voltage lines and constitute the final stage
of energy delivery to the end user. There are multiple ways in which the
presence of PV can affect both of these systems, potentially incurring a
cost.

As penetrations of distributed PV (DPV) increase, uncertainty about
the potential system impacts and their associated costs, in addition to
concerns about utility business model disruption and cost-shifting of
fixed costs associated with maintaining the electric grid from solar to
non-solar customers, have contributed to debates around interconnec-
tion rules, net metering, and feed-in tariffs taking place across the
globe. An enhanced understanding of the costs associated with—and
value provided by—DPV is required to support the design of fair and
efficient electricity tariffs, create policies that avoid market distortions,

* Corresponding author.
E-mail address: Kelsey.horowitz@nrel.gov (K.A.W. Horowitz).

https://doi.org/10.1016/j.rser.2018.03.080

encourage low-cost solutions, help utilities plan more effectively for
increasing penetrations of DPV, and compare different energy sources.
An improved, more transparent approach for assessing these costs is
also critical for reducing the uncertainty and cost of the interconnection
process, which, in some cases, has presented a major hurdle to finan-
cing PV projects.

The costs associated with integrating PV into bulk power and dis-
tribution systems are both commonly referred to as “grid integration”
costs; however, in general, modeling the cost of each of these systems
involves distinct challenges. For the bulk system, past efforts to un-
derstand the costs and benefits of PV have highlighted “why calculating
integration costs is such a difficult problem and should be undertaken
carefully, if at all” ([1], pg. 1), largely due to complex, system-wide
interactions. While system interactions at the distribution level are still
quite complex, the localized nature of certain costs may make the de-
finition of some distribution integration costs more tractable. Never-
theless, most past efforts in this area have been system-specific and
have not attempted to extract generalizations. We begin to address this
gap by surveying past work on PV integration costs at the distribution-
level and then attempting to distill a more transparent and generalized
framework for such evaluation.

Up to a certain penetration level, called the hosting capacity, PV
may be incorporated onto the distribution system without requiring
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changes to the infrastructure or prematurely wearing out equipment
[2]. Beyond the hosting capacity, DPV may affect the operating con-
ditions of the distribution system, as detailed in [2,3]. In order to mi-
tigate these effects and maintain reliable grid operation, it may be ne-
cessary to replace or modify communications and controls equipment,
change control and protection schemes, upgrade the rating of devices
on the distribution circuit, and/or upgrade distribution lines. We refer
to the costs associated with these modifications distribution system up-
grade costs. Notably, the presence of DPV may also enable deferral of
line or other system upgrades.

Some prior analysis been performed on distribution system costs
[4-12]. However, inconsistent terminology and sparse underlying in-
formation on how costs were obtained make it difficult to interpret and
compare results from the literature. A standardized set of cost metrics
has not emerged. Some studies also combine the effects of DPV with
other distributed energy resource (DERs), including biomass, storage,
and wind. This is further complicated by the fact that true variability in
costs is high, and depends heavily on several factors, including: the
location of PV systems on the feeder; feeder and substation character-
istics (including network type, existing equipment on the grid, electrical
characteristics, length, peak load, number of customers, etc.); and the
selected integration approach, which is itself influenced by multiple
actors within utilities and regulatory bodies. Even utilities, who are
privy to much more cost information than most researchers or the
general public, struggle to accurately predict costs associated with in-
corporating very high penetrations of DPV.

In this work, we seek to advance the state of understanding of grid
integration costs for the distribution system through the following
contributions:

® Reviewing prior literature and the current understanding of dis-
tribution system costs associated with DPV,

Introducing of a transparent framework for assessing costs of dis-
tribution system upgrades required for maintaining grid reliability
in the presence of PV,

Identifying the key drivers of distribution system upgrade costs,
Proposing a consistent set of terminology for distribution system
costs that recognizes the lack of a single standard set of costs, and
Clarifying the difference between distribution upgrade costs and
interconnection costs, as well as the difference between the cost to
integrate PV onto the bulk power and distribution systems.

Overall, this effort aims to clarify issues, terms, and concepts in
order to facilitate support for utility and policy decision makers.

Section 2 reviews prior literature related to distribution system
costs. Section 3 presents a taxonomy of distribution system upgrades
that may be required to integrate PV and outlines a bottom-up approach
for calculating distribution upgrade costs on a specific feeder as a
function of penetration level. In Section 4, these costs are discussed in
the context of prior work as well as the total costs and benefits asso-
ciated with PV and other energy generators.

2. A review of prior cost analysis on distribution system costs
associated with DPV deployment

Prior work related to distribution system costs has generally fallen
into one of three categories: 1) analysis of distribution system costs for
specific feeders or regions, typically for one or several DPV penetration
levels, 2) examination of the potential for different low-cost solutions to
expand the hosting capacity of specific distribution systems, without
explicitly calculating the cost of these upgrades, and 3) development of
general frameworks for analyzing distribution system costs associated
with DPV. In the following sections, we review work falling into each of
these categories.
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2.1. Prior work on distribution system costs associated with DPV

Table 1 provides an overview of prior work that estimated dis-
tribution system costs associated with the presence of DPV. The SGIP
study [5] presents empirical data from interconnection reports on the
total cost of mitigation and interconnection facilities required to safely
and reliably connect DPV to several different grids in the United States.
It is of note that information on distribution system costs from inter-
connection reports is reflective of costs to interconnect larger DPV
systems—hundreds of kWs to tens of MWs in size—rather than smaller
systems installed on residential or small commercial rooftops. All other
analyses involve simulating the effects of DPV on the distribution
system, and then using the results as a basis for determining required
system modifications and calculating cost. Heuristics have been used to
select approaches for mitigating operational violations. Generally,
analyses have either used the hosting capacity approach [6,9,10] or
network planning tools [4,7,8]. Some of these studies consider potential
impact of smaller rooftop DPV systems as well. Where information on
the size of systems assumed was available, this is given in Table 1.

Work in this area has focused on networks in either in European
countries or the United States (U.S.). It is of note that distribution
systems in the United States and Europe have different configurations
and characteristics. For example, European low voltage (LV) networks
typically provide 3-phase, 220-240 V service to dozens or hundreds of
customers from a single transformer. In the United States each sec-
ondary (low to medium voltage) transformer serves only a few custo-
mers, and most residential and small commercial loads are served with
single-phase 120V supply, while higher voltage, 3-phase service is
provided to large commercial and industrial loads. The single-phase
loads are often provided by extensive single-phase medium voltage
(MV) laterals not found in European systems. The mounting of dis-
tribution lines can also be different, with many MV networks in Europe
buried and LV networks mounted on buildings. Additionally, utilities
are subject to different regulations in different countries. These factors
can contribute to differences in the cost of integrating DPV. The MIT
Future of Solar study estimated costs for both European and U.S. net-
work designs, and found a significantly lower increase in distribution
costs compared to a no-PV scenario for U.S.-type networks [8]. Litera-
ture on distribution system costs associated with DPV deployment in
countries outside of Europe and the United States is lacking. Grid in-
tegration costs for other Organization for Economic Co-operation and
Development (OECD) countries were published in reference [13], but
distribution system costs were only separated out for Germany, and it
was unclear what costs the authors included in this category or how the
results were obtained.

We found a direct, quantitative comparison between results shown
in Table 1 to be difficult for several reasons:

e Inconsistency in costs that were included in each study, as well as
inconsistent terminology used for different cost categories.
Inconsistency in units used for both integration cost and penetra-
tion, with insufficient information included to convert between
units. In some cases, integration costs represented marginal costs,
whereas in others, they appeared to be average costs. Additionally,
the cost equations vary, with some authors discounting lifetime
equipment costs back to present values, while others simply sum-
ming all upfront capital costs.
Variation in the methodology and assumptions, including: assump-
tions about DPV system sizes and distributions, loads and load
profiles, the solar resource, and treatment of hosting capacity,
among others. In many cases, little data were provided on the un-
derlying methodology and assumptions. Consensus in the literature
is that results can be sensitive to these factors.
e Information on how input cost data are obtained is often missing
from most prior work. Some sources [5,9,11] include unit costs data
for a few specific upgrades, but this data is not typically published.
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In some cases, papers state that this is due to the proprietary nature
of much of this data. This makes it difficult to unpack cost drivers or
build off of prior literature to analyze costs in other scenarios, or
with even greater penetrations of PV.

Although we could not draw a quantitative comparison of prior
results, several common themes have emerged:

® Costs incurred on the distribution system vary significantly de-
pending on locational factors, loads, the status of the rest of the
power system, and strategies used to integrate DPV. In effect, the
shape of the curve illustrating costs versus penetration level is not
consistent between different scenarios. Accordingly, a generalized
cost of distribution integration for DPV cannot be obtained.
Distribution system costs are higher when PV systems are clustered
together and located further from the substation. They also tend to
be higher in rural areas, which are currently more likely to be lightly
loaded, have a lower rated capacity, and host larger PV systems
located further from the substation than urban grids.

Careful siting of PV systems can significantly reduce the impact on
the distribution grid and associated costs.

Increased flexibility in the distribution system, achieved through the
expanded use of demand side management or distributed storage,
could significantly reduce distribution systems costs, especially at
high penetrations.

Advanced communications and controls, which are still being de-
veloped, will likely be required for low-cost integration at very high
penetrations of PV, in part because of their ability to increase the
flexibility of the system.

While several studies pointed to increased flexibility or the use of
advanced communications and controls as potentially low-cost options,
prior works have explored the cost of these strategies in-depth or con-
sidered the full suite of potential options. There has been other cost-
benefit research on smart grids as a whole that has included informa-
tion on advanced communications and control costs [14], but costs
triggered specifically by increased penetration of PV, versus other
system drivers, are not clearly identified or allocated. Additionally,
because advanced communications and controls for smart grid appli-
cations are still being developed, and solutions are often customized,
significant uncertainty around these costs exists.

As shown in Table 1, the Imperial College of London study [4] re-
ports negative numbers in their range of possible integration costs. This
is because this study defines total integration cost as the cost incurred
on the grid due to the presence of PV minus the benefit provided by the
PV to the grid. In this case, the benefit was provided in the form of
reduced distribution line losses and deferral of distribution line up-
grades. Notably, DPV could provide several monetizable benefits to the
distribution and/or bulk power systems including reduced generation
capacity costs, deferral of transmission line upgrades, reduction of
transmission line losses, hedges against future fuel prices, and improved
resiliency of the power system, for example during natural disasters
[15] (although the ability of PV to improve resiliency of the current
power system is still subject to debate). Like cost, benefits are highly
dependent on the scenario and assumptions, and are not generalizable.
Inconsistency in what costs and benefits are included in the calculation
of grid costs makes it difficult to compare prior work. Keeping track of
which parties realize these benefits (and incur the costs) is also critical
for understanding competitiveness of a given generator. Additional
prior analyzes that have attempted to assess the benefits or value, but
not cost, of DPV to distribution systems include [15-17].

The costs in Ref. [18] represent the costs to integrate all DERs into
the distribution system; 90% of the DER is assumed to be DPV, while
10% is assumed to be biomass. In scenarios where multiple DERs are
present or there are multiple motivations for upgrading distribution
systems (e.g. advanced communications and controls that improve
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reliability of service or allow for the use of time-of-day pricing, in ad-
ditional to allowing for the successful integration of DPV), it may be
difficult to attribute costs to DPV specifically. This is discussed in more
detail in Section 3.

2.2. Prior work on expanding the hosting capacity of DPV

Multiple papers have explored the potential for expanding the
hosting capacity of DPV via the use of advanced or “smart” inverters for
real and reactive power control [2,20-28]. The potential for using dy-
namic curtailment to expand the hosting capacity of a mix of DER-
s—including DPV—on European distribution systems was also studied
in [29,30]. There is general agreement among the literature that these
solutions could enable expanded hosting capacity; the degree of ex-
pansion possible is dependent on loads, the location of the DPV, the
presence of voltage regulators in the distribution system, electrical and
physical feeder characteristics, and the control algorithms used (e.g.
fixed power factor (PF) versus voltage-dependent PF schemes). This
would allow for the incorporation of higher penetration of PV onto the
distribution system while avoiding the need for distribution system
upgrades. Because voltage regulation capability has been previously
required in some countries (e.g. Germany), and advanced inverter
features are typically already integrated into most inverters for sale
worldwide, the use of advanced inverters typically does not change
customer capital or O&M costs. The use of advanced inverter cap-
abilities can, however, impact distribution system losses, and in some
situations may require decreasing real power production from PV, both
of which can impact utility operations costs. Curtailment of real power
output would also effectively increase the levelized cost of energy or
LCOE for the DPV generators. However, prior work [29,30] has found
that dynamic curtailment of DER output by less than 5% could expand
the hosting capacity significantly, so increases in LCOE may be small.
Currently, for customer- or third-party-owned, rooftop PV, the ability of
the utility to curtail output may be limited by regulations, thus mod-
ified regulations may be required to enable use of curtailment across a
greater number of systems.

Prior work has also demonstrated that the hosting capacity of DPV is
sensitive to the location of the DPVs in the distribution system
[2,27,31-35]. Thus, controlled siting of DPV generators could allow for
the incorporation of higher penetrations of PV while minimizing grid
costs. Currently, grid integration costs that can be incurred by PV de-
velopers in the interconnection process may influence the decision to
site some DPV at certain locations; however, there is currently no me-
chanism that allows utilities to choose whether or not DPV is placed at
specific locations, and this would require the development of new
policy frameworks.

Finally, several papers have examined potential for the use of on-
load tap changers (OLTC) [11,21,26] or modified OLTC controls
schemes for mitigating voltage violations and expanding the hosting
capacity of DPV. Such devices are common in the United States, but less
so in Europe. These studies found that the use of an OLTC could expand
the hosting capacity, but that the degree of expansion depends sig-
nificantly on characteristics of the network and distribution trans-
former, and on uncertain information about loads profiles and the
distributions system models. Kolenc et al. [21] also found that in-
creasing the size of the MV/LV transformer could also expand the
hosting capacity. As discussed in Table 1, [11] showed that the cost-
competitiveness of this option compared to network reinforcement (or
reconductoring) depends on the PV penetration level. Per unit, OLTC
and distribution transformers are significantly more expensive than the
expected cost of enabling advanced inverter features.

While only [11] explicitly calculates costs, this body of work pro-
vides simulation of the hosting capacity (below which no distribution
system costs are incurred) on a diverse set of networks, illustrates how
costs could vary significantly depending on the choice of mitigation
solution, and demonstrates the potential of several low-cost options for
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expanding the hosting capacity. Research on the best control schemes
for voltage regulation is ongoing, and it may be possible that new al-
gorithms could lead to greater expansions in the hosting capacity using
these approaches in the future.

2.3. Development of frameworks for calculating distribution system costs
associated with DPV

Electric Power Research Institute (EPRI) has recently published a
description of a general framework for calculating distribution system
costs associated with DPV, but has not yet published cost modeling
results using this approach [36]. Their framework involves simulating
the impact of PV on a distribution feeder, determining violations to grid
operating conditions, selecting approaches for mitigating these viola-
tions, and then calculating the total cost of mitigation. This is similar to
the approach used in some prior work cited in Table 1, including
[9,18]. EPRI proposes selecting a set of feeders to represent the full
distribution system, for example via clustering analysis [18,28,37]. The
authors additionally point out that the presence of DER increases the
interaction between the distribution and transmission systems, and that
constraints on each of these systems should be aligned when conducting
analysis. This work includes guidance on integrating distribution and
transmission system models, as well as incorporating distribution
system costs into a comprehensive cost-benefit analysis of PV.

These works contribute significantly to the development of proce-
dures that can be used to better assess the costs and benefits of DPV to
the distribution system—and in the case of the ERPI study, society more
broadly—and begin to coalesce around a common categorization for
distribution system costs. However, they do not include definitions of
standardized cost metrics, underlying unit cost data, or guidance on
how to allocate the cost of system upgrades that have multiple moti-
vations for adoption (e.g. new communications systems, energy stor-
age—see Section 3 for discussion).

2.4. Gaps in prior work

The study of DPV distribution grid integration costs is relatively
new, with most prior work published within the last three years. The
literature has helped to clarify the challenges associated with calcu-
lating these costs, illustrated some potential cost drivers, and demon-
strated that the cost of integrating DPV onto the distribution system can
vary widely depending the mitigation strategies selected, the char-
acteristics of the network, load profiles, DPV energy production, and
the location of generators on the feeder. However, there are still sig-
nificant gaps in the literature that need to be addressed in order to fully
understand distribution grid integration costs. One issue is the lack of
published information on underlying cost assumptions. As discussed
above, the proprietary nature of certain cost and network data often
make these data difficult to publish. Without information on the unit
costs of different mitigation strategies, it is very difficult to unpack cost
drivers or to compare different mitigation strategies. Additionally, this
increases the “barrier to entry” for conducting this type of analysis,
because data must be obtained from utilities or other sources for each
study; this can be difficult for newcomers to the field, and is a time-
consuming effort often requiring the use of a non-disclosure agreement
(NDA). The California Public Utilities Commission (CPUC) did release a
database of costs per unit for components often required to integrate PV
into California utility systems in September 2016, with the goal of in-
creasing transparency and decreasing costs and uncertainty associated
with the interconnection process [38]. This database represents a step
towards addressing this data gap. However, this database only contains
information on strategies currently employed by California utilities
when incorporating larger PV into their systems; both unit costs and
mitigation strategies employed will vary depending on PV system-size,
utility, state, and country, and new options for mitigating the impacts of
DPV are emerging.
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A consensus on terminology and metrics for analyzing the costs and
benefits of DPV to the distribution system has also not yet emerged
from the literature. There is not a standard definition of distribution
grid integration costs, including what costs should be categorized under
this heading or how this cost should be calculated. The metrics and
units used for grid integration costs (e.g. $, $/kW, $/kWh) also vary,
with insufficient data provided to convert between units. This incon-
sistency makes it very difficult to interpret and compare prior work.

Additionally, while some studies [6-8,11] calculated costs on in-
dividual feeders over a wide range of penetration levels, the literature is
limited and very high penetration levels are not often considered. Prior
cost analysis has also only considered a limited set of possible options
for incorporating DPV, and we do not yet have a clear and complete
picture of the relative cost of all available options. To our knowledge,
analysis of costs associated with the use of advanced communications
and controls strategies has not been published. Validation of the ability
of cost models to accurately estimate cost is also not generally avail-
able. Finally, as discussed in Section 2.1, all prior cost analysis has
focused on distribution systems in the United States or Europe, and very
little is known about what these costs might be in other countries.

3. Proposed approach

In this section, we outline an approach that begins to address some
of the gaps in prior work identified in Section 2.4, proposing a standard
set of cost metrics (terminology, equations, and units), as well as guide
for categorizing and allocating different costs. This approach is in-
tended to improve the ease, transparency, and consistency associated
with calculating distribution grid integration costs as a function of
penetration level on a given feeder, without being overly prescriptive
about methods and assumptions.

There are many components to distribution grid integration costs.
As discussed above, these costs may be positive or negative, with ne-
gative cost representing a net benefit to the grid. In general, the dis-
tribution grid integration costs are split into three domains, illustrated
in Fig. 1:

1) The (near) zero cost domain: A domain where costs are near zero,
corresponding to penetrations below the hosting capacity, although
the hosting capacity itself depends on uncertain input assumptions,
including customer loads and the spatial distribution of the DPV.
Non-zero costs in this domain could include interconnection costs or
the cost of any changes in distribution line losses; these two costs are
explicitly defined in Section 3.1.

2) The quantifiable cost domain: A domain where modifications to the
distribution system (feeders and substations) equipment or controls
(and/or the use of advanced inverters by DPV generators) are re-
quired specifically for mitigating the impacts of DPV on distribution
system operations. In this regime, distribution grid integration costs
can be clearly defined and are quantifiable. However, costs will be
dependent on the mitigation strategy selected and the specifics of
the feeder, loads, PV resource, etc.

The fuzzy cost domain: A domain where system-wide upgrades are

undertaken, which may improve the ability to host DPV on the

distribution system, but which would also provide additional benefit
to utilities (at either the distribution or bulk power system level)
and/or consumers, and whose adoption is motivated by multiple
factors. These system-wide upgrades could include, for example,
changes to the communication infrastructure or supervisory control
and data acquisition (SCADA) software, the use of distributed sto-
rage, or other smart grid upgrades. It is likely that distribution up-

grade costs will be much more difficult—maybe even im-

possible—to attribute to DPV especially as the overall power system

modernizes and interaction between bulk power and distribution
systems becomes more complex. While these costs are shown in the
high penetration region, system-wide upgrades may occur at lower

3)
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penetration levels as well, for example if pre-emptive or forward-
looking upgrades are undertaken, or if the utility decides to upgrade
its system at lower penetration levels for other reasons (e.g. to im-
prove system visibility and reduce outage times).

As discussed in Section 2, there is a substantial body of literature on
approaches for computing the hosting capacity and understanding the
zero-cost domain. In Section 3.1, we outline a cost analysis approach
applicable for domain 2). In Section 4, we discuss possible options for
calculating costs in domain 3), and highlight associated challenges.

3.1. Calculating distribution system integration costs in the quantifiable cost
domain

3.1.1. Distribution system integration cost breakdown
The total distribution system cost, Cps, can be defined as follows:

Cps = Cpu + Cic + Cpr, (@)

where Cpy is the cost of any upgrades to the distribution system
equipment or controls required for maintaining grid operating condi-
tions and reliability, Cyc is the cost of interconnection, and Cp;, is the
cost associated with distribution line losses. Cpg is a net cost in the sense
that it should be compared to a reference case without DPV, and may be
higher or lower than the costs in that reference case; Cps could be lower
in the case with DPV if, for example, the presence of DPV enables line
upgrade deferrals or substantially reduces distribution system losses. All
of these costs are a function of both DPV penetration level and time for
a given feeder and scenario. Ideally, calculation of Cps would even-
tually be integrated with analysis of other DPV costs and benefits, as
discussed in Section 4.

Cic includes the cost of equipment required to physically link the
DPV to the distribution system as well as the soft costs associated with
the interconnection process (e.g., interconnection feasibility, system
impact, and facilities studies, if required). Interconnection cost may be
borne either by the PV system owner or the utility, depending on the
market. As discussed above, the soft costs of interconnection are
sometimes already included in calculations of LCOE [39], and care
should be taken to avoid double counting these costs. Typically, inter-
connection soft costs have been collected via interview or by examining
project cost data from utilities and/or project developers [39,40]. These
will be project specific, and could vary depending on several factors,
including how easily utilities can assess the potential impact of DPV,
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Fig. 1. Illustration of the three regions of PV
integration costs: (near) zero cost (hosting ca-
pacity), increasing, quantifiable costs, and dif-
ficult to disaggregate system-level effects in the
fuzzy cost domain. Note that fuzzy costs may
also occur at lower penetration levels, and that
it is possible for the quantifiable cost domain to
extend to very high penetrations. Curve is
shown for the purposes of illustrating potential
cost drivers only, and is not based on real data;
the shape and magnitude of the curve will be
highly dependent on the specific scenarios.

and if certain projects are fast-tracked for approval; new approaches are
currently being developed to reduce the soft cost associated with the
interconnection process, and these costs may come down over time
[38,40,41]. The cost of installing any new distribution lines or other
hardware required to physically link a DPV system to the grid would
also be included in Cyc; these can be calculated by determining the
distance between the proposed DPV site and the nearest distribution
circuit (if any), the required size of the connecting conductor, and then
multiplying by the materials and installation cost per length of that
conductor type. The net present value (NPV) of these interconnection
costs as a function of penetration, p, can be calculated according to Eq.

(2):

N
Cre(p) = z Z

n=0 i(p)

ONC]C’ i

1+ dn &)

where:

® n is the year index.

e N is the planning horizon or planning period, in years.

e d is the discount rate.

® ONCyc; is the total overnight capital cost of interconnection asso-
ciated with generator i.

Cpy, will depend on the behavior and status of the bulk power
system. The change is power losses can be readily calculated by com-
paring the time series power flow with and without DPV present at each
penetration level, as previously outlined in [19,36,42]. The NPV of Cp;,
can be defined as:

N

Cpr (p) = CLOSS'[ z

n=0

Py (p) — Prcf)-At

a+ar 3)

where:

® ;. is the cost of loss compensation, in $/kWh.

® Ppy(p) are the total power losses within the distribution grid with
DPV at penetration p, in kW.

® P, are the total power losses within the distribution grid in a re-
ference case without DPV, in kW.

e At is the time step of the time series power flow simulation.

The remaining challenge is then to calculate distribution system
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upgrade costs (Cpy) as a function of penetration level for a specific
scenario and set of assumptions, which we dedicate the remainder of
this section to.

One challenge with understanding the cost of integrating PV has
been selecting a reference case for comparison. While a PV system may
trigger certain distribution system upgrades at the time of install, it may
allow for the deferral of other distribution system upgrades in the fu-
ture, or required upgrades may provide additional value for other
technologies (e.g., other DERs) in the future. Because of this, we pro-
pose the definition of Cpy on a specific feeder at a given penetration
level, p, as the net present value (NPV) of the difference between the
total distribution system upgrade cost with and without DPV over a
specific planning horizon:

N

Coup) =Y,

n=0

ONCpy pv (p, n) + O&Mpy, py (p, n) — ONCpy,rer (n) — O&Mpy, ref (1)
a+adr

@

where:

® ONCpy,pv(p,n) is the total overnight capital cost of all distribution
system upgrades in year n with the presence of DPV at penetration p,
in $.

O&Mpy,pv(p,n) is the total operations and maintenance (O&M) cost
associated with distribution system equipment upgrades that are
required with the DPV at penetration p, plus any changes in O&M
costs of existing equipment due to the presence of the DPV, in $. For
example, any increase in regulator or load tap changer (LTC) op-
erations sufficient to trigger maintenance or replacement would be
included here.

ONCpy,res () is the total overnight capital cost of any distribution
system upgrades that would be required in a reference case without
PV in year n.

O&Mpy, ref () consists of any O&M costs that would be incurred in a
reference case without PV in year n.

Capital and O&M costs include all hardware, software, and/or labor
required. This metric captures both the cost and value of PV with re-
spect to distribution system upgrades, without blurring the distinction
between these during the calculation. Upgrades that should be made
regardless of the presence of DPV, even if the utility only discovers the
need for the upgrade in the course of the PV impact analysis, would be
included in both the DPV and reference case and thus cancel out.

Under most current U.S. regulations, the project developer can be
responsible for some or all of the costs associated with required dis-
tribution upgrades. In these cases, the project developer's discount rate
should be used for the costs that the developer is responsible for, and
the utility's discount rate should be used for costs that the utility is
responsible for.

3.1.2. Normalized distribution system integration costs

Distribution system integration costs can also be normalized by ei-
ther capacity (e.g., watts) or energy production (e.g. kWh). Normalizing
these costs makes it easier to compare between studies on distribution
system costs, and/or to common metrics for the cost of the generation,
including overnight capital costs ($/W or $/W;) and LCOE ($/kWh).
There are several capacity-based metrics that are most useful for dif-
ferent purposes:

Zp Cps (p)
Zippa0 B

Average cost per watt = Cpo =

)
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Average overnight capital cost per watt = ONCpg,q
Z ONCic (p) + ONCpy,pv (p) — ONCpU  ref
_ P
DI
i(Pmax)

(6)

where P; is the rated DC power output (under standard test conditions)
of generator i at the maximum penetration level, pn., and thus
2 ) P, is the sum of the rated power output for all DPV units on the
distribution system at the maximum penetration level. éDS,a is more
useful for comparing the total calculated distribution system costs as-
sociated with DPV across different cost analyses, while ONCps , is more
useful when comparing to the overnight capital costs of PV systems or
other generators.

The marginal levelized cost per kWh at penetration p, which we call
LCDS,,, is:

Cps(p)
Toco Ziy)

where E,; is the estimated energy production in year n of generator i,
and i(p) is the set of all generators present at penetration level p. The
average, levelized cost of distribution system upgrades, LCDS,, is then
simply:

LCDS,(p) = =

T+dr

)

Zp Cos(p)
En,i

LCDS, = N
n=0 Zl(Pmax) a+dn

)

Costs normalized by either capacity or energy production could ease
comparison between studies and generator costs, but because of the
number of assumptions that go into calculating energy production of
each generator, and the additional computations required, the capacity-
based normalizations may be preferable for comparing between dif-
ferent studies on distribution system costs specifically.

Of course, the cost incurred by specific DPV systems that are born by
either utilities or PV project developers are also of interest for evalu-
ating economic competitiveness under current interconnection rules.
Economic competitiveness is discussed in more detail in Section 4.

3.1.3. A taxonomy of distribution upgrade costs

We saw in Section 2 that variation in the costs included in the
calculation of grid integration costs, as well as variability in the miti-
gation solutions considered, can make it difficult to interpret results
from prior work. In Section 3.1.1, we clarified the costs that fall under
Crc and Cp;. Distribution system upgrades that may be required to
maintain grid operating conditions as DPV penetration increases are
shown in Table 2. This table should serve as an initial guide for the
types of costs to include in Cpy. Components below the solid line are
considered advanced solutions, and are not widely employed when
integrating DPV today, but could be required for very high penetration
levels. The cost of each type of component is dependent on several of
different parameters (e.g., voltage and current ratings for transformers,
relays, and reclosers; latency and number of endpoints for commu-
nication networks, VARs supplied for capacitor banks; and ground or
pole-mounted configuration). Not all of these components will be re-
quired in every scenarios — only a subset of these will be selected to
mitigate any observed impacts of DPV. In Section 3.1.4, we will discuss
common mitigation strategies employed today.

A few items in Table 2 deserve additional discussion. Of special note
are communication networks, since coordinated control of PV systems
may prove to be a particularly effective mitigation at very high PV
penetrations. This could include expanded control of utility owned
equipment by expanding current SCADA systems or integration of ad-
vanced distribution management systems (ADMS) [43]. It could also
include support for direct to PV communication through a wide range
of communication channels including advanced metering infrastructure
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Table 2
Distribution system upgrade costs related to DPV.

Communication networks (wireless, fiber-optic, power line)*

Communication modules*

Communication bridges for field and substation devices*

Line sensors (voltage, current)

Recloser

Recloser controller

Relay

Relay controller

Fuses

Capacitor banks

Capacitor bank controller

Static VAR compensator

Modifications to or replacement of existing electronic controllers (for relays,
reclosers, capacitors, etc.)

Load tap changer/Voltage regulator

Modify settings on load tap changer

Substation transformer

Distribution transformer

Grounding transformer

Smart meters and advanced metering infrastructure (AMI)*

Distribution supervisory control and data acquisition (SCADA) software or upgrade*

Conductor (for the distribution network)

Cost to integrate new systems with existing infrastructure*

Software for demand response*

Smart breaker panel*

Li-ion battery systems (including smart control system)*

Software and hardware for dynamic PV curtailment

Any additional software required for system re-optimization and protection

Applications for Volt/VAR optimization*

Solar resource and output modeling and forecasting software

PV monitoring and fleet management applications: Other

Distributed energy resources management system (DERMS) software or upgrade*

Distribution management system (DMS) software upgrade*

Data management solutions*

Phasor measurement units and accompanying software

Advanced substation controller*

Starred (*) components in could have multiple motivations for adoption.
Components below the solid line are considered advanced solutions and are not
widely employed today.

(AMI), customer owned internet, cellular modems, third-party PV
owner fleet-wide management systems, etc. In some cases, existing
communication networks may be leveraged to implement advanced
functionality at no extra cost. In other cases, increased bandwidth, re-
duced latency, or deployment of additional routers may be required.

Communication networks or upgrades, as well as several other
components listed in Table 2, could provide additional functionality
beyond the integration of distributed PV. These components are in-
dicated with a star (*) in the table. For example, these components
could also be used to manage other DERs and/or provide other value to
the utility (e.g. improved resilience, outage management, or customer
satisfaction). In other words, the presence of DPV would be only one of
several motivations for purchasing these components, and the DPV
would only “use” part of each component for grid integration. When
these components are indeed utilized for multiple purposes, only a
portion of their cost should be allocated to Cpy. This portion should
correspond to the relative use of the component for DPV integration.
For example, for the communication system, the total costs might be
multiplied by the fraction of devices using the network. The relative-use
fraction for DPV will be more difficult to determine for other compo-
nents, and will require subjective approximations. The difficulty of this
assignation may push such communication costs and benefits into the
fuzzy cost domain. Moreover, advanced automation and control are
undergoing active product development and are likely to see changes in
their functionality, performance, and cost over time.

Other difficult to quantify costs include those for integration and
engineering costs arising from the need for interoperability between
individual systems on the distribution network. This can be a significant
cost and is very difficult to predict; in our interviews, costs associated
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with achieving interoperability ranged from less than 10% of other
project costs (for cutting-edge demonstrations) to over 100%. One
source suggested that these costs could be up to 10 times higher than
total project costs. However, the interoperability provided by these
larger efforts will likely enable other value beyond integrating DPV; if
this is the case, this cost should also be allocated according to relative
use as discussed above.

Furthermore, penetrations of DPV will increase over time, and as
time passes, learning and availability of more interoperable systems is
expected to drive down this cost. Thus, when computing a relationship
between integration cost and penetration, it would be prudent to cap-
ture possible reductions in these costs as penetrations increase; how-
ever, there is insufficient data to be able to predict this decrease at this
time, and this represents a significant uncertainty in this type of ana-
lysis.

3.1.4. Mitigation approaches

Once penetration levels exceed the hosting capacity and distribution
system upgrades are required, a key assumption is which mitigation
approaches to consider, particularly because they vary by utility prac-
tice and regulatory regime. A set of different mitigation strategies
commonly employed today could be compared, in order to evaluate the
relative cost-effectiveness of different choices. Based on interviews,
review of available reports, and published literature, we compiled in-
formation on what mitigation schemes are typically employed by uti-
lities today (Table 3). Table 3 can serve as a heuristic guide for selecting
mitigation strategies for initial cost analyses. Eventually, other emer-
ging solutions discussed in Section 3.1.3 could also be considered as
cost data and best practices for allocating the costs of system-wide
upgrades (those falling into the fuzzy cost domain) become available.

It is of note that no clear relationship between penetration level and
mitigation strategies employed could be drawn from our review.
Currently available solutions have been used to successfully integrate
PV at penetrations (measured as installed PV capacity/peak load) of up
to 100%, and many examples of using these solutions to integrate very
high penetrations of DPV exist [44].

3.1.5. Overcoming data challenges

The major challenge with quantifying distribution system integra-
tion costs in this way is the need for detailed data about the distribution
network and unit cost of different upgrades to incorporate into the
power system simulation. However, without such detailed data and
power system analysis, cost results will be inaccurate and potentially
misleading, particularly because of the strong dependence of results on
specific feeder and DPV characteristics discussed in Section 2.

In Section 2.4, we discussed how much of this required data is not
publicly available. Data that is available is specific to limited geo-
graphic regions (mostly California) and largely focused on larger system
interconnections. A key area of future research is to develop open da-
tasets for these costs. In on-going work by the authors, we are working
to create a database of costs of distribution system upgrades in Table 2.
To circumvent issues associated with disclosure of proprietary in-
formation, such research typically requires collecting cost data from a
large number of sources such that the data can be aggregated and
anonymized, and only statistics of the costs of each part released pub-
licly.

3.1.6. Other considerations

There are many assumptions that need to be made in simulating the
impacts of DPV on the grid, including assumptions about load profiles,
PV system outputs, and the location of DPV systems on the circuit.
Significant uncertainty exists around each of these input assumptions.
Sensitivity or Monte Carlo analysis may be performed to assess the
possible implications of these uncertainties.

In prior economic analyses, people have used either stochastic [32]
or behavioral economic [45] models to determine where DPV is
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Table 3
Common mitigation approaches employed today.

Violation Mitigation approaches Notes

Overvoltage ® Advanced inverters Advanced inverters are most commonly used for power factor (PF) control.
® Modification of voltage regulator equipment or increased use of Energy storage is employed much less frequently.

voltage regulators (LTC, SVC, capacitor banks)

® Modifications to voltage regulator controls equipment
® Energy storage

Undervoltage ® Addition of capacitors
® Modification of capacitor controls

Voltage stabilization ® PF control via inverter Reconductoring is not a preferred solution due to expense, employed only if
® Modification of capacitor bank control settings necessary
® Reconductoring

Overload ® Transformer replacement Energy storage may provide a cost-effective alternative to major transformer
® Reconductoring or line replacements, even at current prices
® Energy Storage

Protection ® Change fuse size
® Installation of additional reclosers, relays, or fuses or change the

location of these devices on the circuit

® Update substation protection schemes
® Use of advanced relay controls/functions

Harmonics ® Harmonic filters

Device movement L]

frequent tripping during frequency drops
Anti-islanding ® Built-in inverter functionality
® Direct Transfer trip
® Coordinating tripping of PV systems

Change low-frequency trip settings of the PV inverter to reduce

deployed on the distribution system. As discussed in Section 2.1, clus-
tered DPV tends to have a larger impact on operating conditions, par-
ticularly when located far from the substation; prior research has in-
dicated that such clustering may occur, for reasons including the
existence of neighboring systems and spatial correlations in environ-
mental, policy, and socio-economic conditions [46]. Thus, a range of
customer adoption models should be considered in order to capture a
spectrum of potential costs.

4. A holistic view of PV: distribution system costs in context

In general, economic competitiveness of a product is defined by the
difference between its benefits (also referred to as value or utility in the
literature) and costs, and is relative to a particular actor in the market.
For example, PV may be economically competitive for a homeowner if
their electricity bill savings exceed the cost to purchase the PV system,
but not economically competitive for the utility if the costs they incur
for integrating the system into the grid exceed value provided to the
grid, or if the costs cannot be recovered by increasing consumer prices.
Economic competitiveness depends on a complex set of market, policy,
cost, and technical factors; EPRI provides a discussion of relevant me-
trics for different parties in reference [36].

Taking a comprehensive view, the total costs and benefits associated
with PV (or any energy generator) are comprised of four elements:

1. The lifetime cost of the generator itself, typically represented by the
LCOE.

. The costs and benefits incurred at the bulk power system level when
the generator is added to the system.

. The costs and benefits incurred at the distribution level when the
generator is added to the system.

. Externalities associated with the production, installation, operation,
decommissioning of the generator, as well as delivery of its energy
to the consumers. While methodologies and assumptions vary
widely, prior analysis has indicated externalities associated with PV
represent a net benefit compared to the most likely non-renewable
energy sources for a given scenario [52-55].

In this work, we have focused on advancing the understanding of
one of these elements (number 3) specifically for DPV systems (rather

than centralized PV installations connected to the transmission system).
It should also be noted that all energy generators, not just DPV, have
associated interconnection and grid integration costs [1]. However, the
uncertainty and variability in output of PV systems in general (as well
as wind, and other variable renewable energy resources), along with
the distributed nature of DPV, pose unique challenges.

As mentioned in Section 1, costs in both 2) and 3) are often referred
in the literature to as “integration” or “grid integration” costs. However,
in general these systems are modeled using different approaches and
represent distinct challenges. The best practice for bulk power system
analysis involves conducting unit commitment and economic dispatch
analysis for cases with and without PV, and then comparing the total
system costs in each case. This analysis can be conducted under a range
of assumptions about fuel prices, existing generators and line capacities
on the system, loads, and weather conditions. However, it is difficult to
define an integration cost on the bulk power system, and isolating the
costs and benefits may be impossible or misleading. For example, if fuel
costs are included, then adding PV to the system will always reduce
total system cost; these fuel savings from displaced generators dominate
the cost of any grid upgrades required to integrate the PV. Selecting an
appropriate base case for comparison is also difficult. An understanding
of how to satisfactorily calculate and express bulk power system in-
tegration costs is still being developed, and a consensus on whether or
not this can or should be done at all is yet to be reached. Milligan et al.
[1], Agora Energiewende [47], and Denholm et al. [42] provide an
overview of the challenges that have been encountered in analyzing
total grid integration costs associated with PV and wind.

At high penetrations of PV, additional flexibility in the power
system may be required to deal with the variability of the PV resource.
Flexibility can be added on either the bulk power or distribution sys-
tems, or both. In these situations, it may be difficult to separate analysis
of the cost and benefits associated with these two systems. For example,
the addition of DPV plus storage to a feeder may enable deferral of
transmission line upgrades, or reduced capacity and fuel costs asso-
ciated with generators on the bulk power system. Understanding these
complex interactions requires increased coordination on the develop-
ment of more integrated or complementary analysis tools between
utilities and research groups. The use of standardized terminology
among analysts is also critical.

The costs and benefits in all of the categories listed above have some
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dependence on penetration level, although this dependence is often
non-linear, complex, and involves a multitude of factors. The depen-
dence also differs between each category. For example, costs and ben-
efits incurred on a distribution feeder are often dependent on the per-
cent of PV capacity installed as a fraction of load. Additionally, as PV
penetration increases, the marginal economic value of PV could de-
crease due to overproduction during the day [48]. However, installed
PV system prices and thus LCOE have decreased as function of the total
amount of installed PV capacity, due to experience effects. It is very
important to keep track of the costs and benefits that are incurred by
different parties to be able to understand the competitiveness of dif-
ferent energy sources and design good policies and markets.

Externalities are dependent on characteristics of the generators and
systems, and therefore coupled with assumptions and models for LCOE,
distribution integration costs, and transmission system configuration
(note that externalities may be accounted for qualitatively or quanti-
tatively, wherein they are assigned an economic valuation using a
variety of techniques, e.g. as in [56]). The costs and benefits in all four
categories listed above can be strongly influenced by market design,
market conditions, and policy. If subsidies are included in the analysis
of total costs and benefits, for example in the LCOE calculation, an
additional cost representing the cost of the subsidies to the government
should be included to capture the full economic cost. Subsidies exist
today for multiple renewable and non-renewable energy sources, de-
pending on the location.

5. Conclusion

The review of prior literature has identified the need for a more
transparent and standardized approach for assessing grid integration
costs associated with PV systems. We have presented an approach for
assessing distribution system upgrade costs, and discussed this in the
context of total costs and benefits associated with PV. We have iden-
tified three major challenges to understanding these costs at high pe-
netration levels: the interaction between the distribution and bulk
power systems, the ability of certain required distribution upgrades to
provide other benefits to utilities or customers that are difficult to
quantify, and the uncertainty in the cost of advanced solutions and their
interoperability as a function of time. We also find that costs are de-
pendent on a number of assumptions, and no generalized “cost of grid
integration” for PV can be obtained.

Next steps involve applying this methodology to compute distribu-
tion upgrade costs on a set of select feeders under different assump-
tions. These case studies will serve to validate this approach and
identify difficulties with implementing it in practice. Significant future
work is also required to integrate models of DPV impacts on the dis-
tribution system, bulk power system, and society, and obtain a com-
plete, holistic view of PV costs and benefits.
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